On particle Gibbs sampling

نویسندگان

  • NICOLAS CHOPIN
  • SUMEETPAL S. SINGH
چکیده

The particle Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm to sample from the full posterior distribution of a state-space model. It does so by executing Gibbs sampling steps on an extended target distribution defined on the space of the auxiliary variables generated by an interacting particle system. This paper makes the following contributions to the theoretical study of this algorithm. Firstly, we present a coupling construction between two particle Gibbs updates from different starting points and we show that the coupling probability may be made arbitrarily close to one by increasing the number of particles. We obtain as a direct corollary that the particle Gibbs kernel is uniformly ergodic. Secondly, we show how the inclusion of an additional Gibbs sampling step that reselects the ancestors of the particle Gibbs’ extended target distribution, which is a popular approach in practice to improve mixing, does indeed yield a theoretically more efficient algorithm as measured by the asymptotic variance. Thirdly, we extend particle Gibbs to work with lower variance resampling schemes. A detailed numerical study is provided to demonstrate the efficiency of particle Gibbs and the proposed variants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian parameter estimation in dynamic population model via particle Markov chain Monte Carlo

In nature, population dynamics are subject to multiple sources of stochasticity. State-space models (SSMs) provide an ideal framework for incorporating both environmental noises and measurement errors into dynamic population models. In this paper, we present a recently developed method, Particle Markov Chain Monte Carlo (Particle MCMC), for parameter estimation in nonlinear SSMs. We use one eff...

متن کامل

Particle Gibbs Split-Merge Sampling for Bayesian Inference in Mixture Models

This paper presents an original Markov chain Monte Carlo method to sample from the posterior distribution of conjugate mixture models. This algorithm relies on a flexible split-merge procedure built using the particle Gibbs sampler introduced in Andrieu et al. (2009, 2010). The resulting so-called Particle Gibbs Split-Merge sampler does not require the computation of a complex acceptance ratio ...

متن کامل

Particle Filtering for Nonparametric Bayesian Matrix Factorization

Many unsupervised learning problems can be expressed as a form of matrix factorization, reconstructing an observed data matrix as the product of two matrices of latent variables. A standard challenge in solving these problems is determining the dimensionality of the latent matrices. Nonparametric Bayesian matrix factorization is one way of dealing with this challenge, yielding a posterior distr...

متن کامل

MCMC Methods for Tracking Two Closely Spaced Targets Using Monopulse Radar Channel Signals

This paper discusses four techniques to successfully track two closely-spaced and unresolved targets using monopulse radar measurements, the quality of such tracking being a determinant of successful detection of target spawn. It explores statistical estimation techniques based on the maximum likelihood criterion and Gibbs sampling, and addresses concerns about the accuracy of the measurements ...

متن کامل

Inference in Kingman's Coalescent with Particle Markov Chain Monte Carlo Method

We propose a new algorithm to do posterior sampling of Kingman’s coalescent, based upon the Particle Markov Chain Monte Carlo methodology. Specifically, the algorithm is an instantiation of the Particle Gibbs Sampling method, which alternately samples coalescent times conditioned on coalescent tree structures, and tree structures conditioned on coalescent times via the conditional Sequential Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015